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A key feature of the analysis of three-way arrays by Candecomp/Parafac is the essential uniqueness
of the trilinear decomposition. We examine the uniqueness of the Candecomp/Parafac and Indscal de-
compositions. In the latter, the array to be decomposed has symmetric slices. We consider the case where
two component matrices are randomly sampled from a continuous distribution, and the third component
matrix has full column rank. In this context, we obtain almost sure sufficient uniqueness conditions for the
Candecomp/Parafac and Indscal models separately, involving only the order of the three-way array and
the number of components in the decomposition. Both uniqueness conditions are closer to necessity than
the classical uniqueness condition by Kruskal.
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1. Introduction

Carroll and Chang (1970) and Harshman (1970) have independently proposed the same
method for component analysis of three-way arrays, and named it Candecomp and Parafac, re-
spectively. In the sequel, we will denote column vectors as X, matrices as X, and three-way arrays
as X. For a given real-valued three-way array X of order / x J x K and a fixed number of R
components, Candecomp/Parafac (CP) yields component matrices A (/ x R), B (/ x R), and C
(K x R) such that Zle tr (E,{Ek) is minimized in the decomposition

X; = ACB” +E, k=1,2,...,K, )

where X denotes the kth slice of order / x J and Cy is the diagonal matrix containing the elements
of the kth row of C.

The concept of rank is the same for matrices and three-way arrays. The three-way rank of
X is defined as the smallest number of rank-1 arrays whose sum equals X. A three-way array Y
has rank 1 if it is the outer product of three vectors a, b, and ¢, i.e., y;jx = a;b;cx. Notice that (1)
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can also be written as

R
X:Zarobrocr—i—E, 2)

r=1

where a,, b,, and ¢, are the rth columns of A, B, and C, respectively, o denotes the outer vector
product, and E is the residual array with slices E;, k = 1,2, ..., K. Hence, CP decomposes
X into R arrays having three-way rank 1. The smallest number of components R for which
there exists a CP decomposition with perfect fit (i.e., E is all-zero) is by definition equal to the
three-way rank of X.

The uniqueness of a CP solution is usually studied for given residuals E;, k = 1,2, ..., K.
It can be seen that the fitted part of a CP decomposition, i.e., a full decomposition of the matrices
Xy —Er,k=1,2,..., K, can only be unique up to rescaling and jointly permuting columns
of A, B, and C. Indeed, the residuals will be the same for the solution given by A = APT,,
B = BPT,, and C = CPT,, for a permutation matrix P and diagonal matrices T,, T;, and T,
with T, T, T, = Ix. When, for given residuals E, k =1, 2, ..., K, the matrices A, B, and C are
unique up to these indeterminacies, the solution is called essentially unique.

The first uniqueness results of CP date back to Jennrich (in Harshman, 1970) and to Harshman
(1972). The most general sufficient condition for essential uniqueness is due to Kruskal (1977).
Kruskal’s condition relies on a particular concept of matrix rank that he introduced, which has
been named k-rank (Kruskal rank) after him. Specifically, the k-rank of a matrix is the largest
number x such that every subset of x columns of the matrix is linearly independent. We denote the
k-rank of a matrix A as k4. For a CP solution (A, B, C), Kruskal (1977) proved that the condition

ko+kp+kc>2R+2 3)

is sufficient for essential uniqueness. More than two decades later, the study of uniqueness has
been revived in two different ways. On the one hand, additional results on Kruskal’s condition
have been obtained and, on the other, alternative conditions have been examined for the case
where one of the component matrices, C say, is of full column rank.

Additional results on Kruskal’s condition started with Sidiropoulos and Bro (2000) who
offered a short-cut proof for the condition, and generalized it to n-way arrays (n > 3). Next, Ten
Berge and Sidiropoulos (2002) have shown that Kruskal’s sufficient condition is also necessary
for R =2 or 3, but not for R > 3. It may be noted that the condition cannot be met when R = 1.
However, uniqueness for that case has already been proven by Harshman (1972). Ten Berge and
Sidiropoulos (2002) conjectured that Kruskal’s condition might be necessary and sufficient for
R > 3, provided that k-ranks of the component matrices A, B, and C coincide with their ranks.
However, Stegeman and Ten Berge (2005) refuted this conjecture.

Alternative uniqueness conditions came from De Lathauwer (2004) and Jiang and
Sidiropoulos (2004). They independently examined the case where one of the component matri-
ces (for which they picked C) is of full column rank. Uniqueness of the CP solution then only
depends on (A, B). De Lathauwer (2004) assumed that:

(Al) (A, B) are randomly sampled from an ((/ 4+ J)R)-dimensional continuous distribution
F with F(S) =0if and only if L(S) = 0, where L denotes the Lebesgue measure and
S is an arbitrary Borel set in RU TR,
(A2) C has full column rank;
R(R-1) IU-1DJUJ -1
(A3) > < 2 :
De Lathauwer proved that a CP solution (A, B, C) satisfying (A1)—(A3) is essentially unique
“almost surely,” i.e., with probability 1 with respect to the distribution F. Incidentally, De
Lathauwer’s proof yields an algorithm, based on simultaneous matrix diagonalization, to compute
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the CP solution (A, B, C). Notice that the requirement on F' under (A1) guarantees that F(S) =
0 if and only if the set S has dimensionality lower than (I 4+ J)R. In this context, the phrase
“essentially unique with probability 1” means that the set of (A, B), corresponding to nonunique
CP solutions, has dimensionality lower than (/ + J)R.

Jiang and Sidiropoulos (2004) do not consider random component matrices. They examined
a matrix U filled with products of 2 x 2 minors of A and B, and proved that it is sufficient for
uniqueness that (A2) holds and U is of full column rank. In the present paper, we assume that
(A1) and (A3) hold and show that the matrix U of Jiang and Sidiropoulos (2004) has full column
rank with probability 1 with respect to the distribution F. Hence, (A1)—(A3) implies uniqueness
almost surely. This establishes a link between the condition of Jiang and Sidiropoulos (2004)
and the result of De Lathauwer (2004), which is of importance for understanding CP uniqueness.
By making use of the tools of Jiang and Sidiropoulos (2004), we offer an alternative approach
to proving De Lathauwer’s result. Contrary to De Lathauwer (2004), our proof does not involve
fourth-order tensors and requires only a basic understanding of linear algebra. Therefore, it is
likely to increase the accessibility of De Lathauwer’s result.

By extending our analysis, we are able to propose a uniqueness condition for the Indscal
decomposition in which the array has symmetric slices and the constraint A = B is imposed.
Here, we assume:

(B1) A is randomly sampled from an /R-dimensional continuous distribution F with
F(S) = 0 if and only if L(S) = 0, where L denotes the Lebesgue measure and S
is an arbitrary Borel set in iR/ %;

(B2) B = A and C has full column rank;

R(R—-1) I1q-1) I1I-1) I
(B3) > < 2 [ 5 + 1] - (4) Ly >4,

0if I <4,

where /i -4 :{lif [ >4

We conjecture that if (B1) and (B3) hold, then the matrix U of Jiang and Sidiropoulos (2004)
has full column rank with probability 1 with respect to the distribution F. Hence, (B1)-(B3)
would imply essential uniqueness almost surely for the Indscal decomposition. Although we
were not able to give a complete proof of this, we will show it holds for a range of pairs (1, R)
and indicate how a proof for any R and [ satisfying (B3) can be obtained.

To our knowledge, this is the first time that distinct general uniqueness conditions, i.e., (A3)
and (B3), have been derived for the CP and Indscal models, respectively (as opposed to Kruskal’s
condition (3) with A = B). In the Indscal case, a stricter uniqueness condition (in terms of R) is
obtained, since the model contains less parameters than the CP model. Under (A1) and (A2), we
can compare our uniqueness condition (A3) with Kruskal’s condition (3). The latter boils down
to R +2 <min(/, R) 4+ min(J, R) in our context. It can be seen that condition (A3) is implied
by this version of Kruskal’s condition. Hence, condition (A3) is more relaxed than Kruskal’s
condition if (A1) and (A2) are assumed. The same is true for the Indscal decomposition. Under
assumptions (B1) and (B2), Kruskal’s condition becomes R + 2 < 2 min(/, R), which implies
our uniqueness condition (B3).

In the majority of cases (see also the Discussion section below), solutions obtained from
CP and Indscal algorithms can be regarded as randomly sampled from a continuous distribution.
Hence, our sufficient uniqueness conditions (A3) and (B3) apply. Since (A3) and (B3) are closer
to necessity than Kruskal’s condition (3), the practical relevance is immediate.

In the sequel, we denote the column space and the null space (i.e., the kernel) of an arbitrary
matrix Z by span(Z) and null(Z), respectively. Hence,

span(Z) = {y: there exists an x such that Zx =y},
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and null(Z) = {x: there holds Zx = 0}.

The Khatri—-Rao product (i.e., the column-wise Kronecker product) of two matrices X and Y,
with an equal number of columns, is denoted by X e Y. To prove our results, we will make use
of the following result by Fisher (1966, Theorem 5.A.2). We state it here without a proof.

Lemma 1. Let S be an n-dimensional subspace of R"* and let g be a real-valued analytic function
defined on S. If g is not identical to zero, then the set {x : g(x) = 0} is of Lebesgue measure zero
in R".

2. Almost Sure Uniqueness in Candecomp/Parafac

Before we formulate our main result, we first consider the structure of the matrix U of Jiang
and Sidiropoulos (2004). It has elements of the following form:

brg  bip
big by

Aig  Qin

, “

Qje  Qjh

where ]l <g<h <Rand1<i, j <Tandl <k, < J.Ineachrow of U the value of (i, j, k,[)
is fixed and in each column of U the value of (g, &) is fixed. So U has I2J? rows and R(R — 1)/2
columns. We order the columns of U such that index g runs slower than 4. The following facts
can be observed:

e Rows of U withi = j and/or k = [ are the zero vector.

Rows (i, j,k,l) and (i, j, [, k) sum up to the zero vector.

Rows (i, j, k,I) and (j,i, k,[) sum up to the zero vector.
Rows (i, j,k,l) and (j,i,l, k) are identical.

This yields the conclusion that, when determining the rank of U, we only have to consider rows

for which 1 <i < j <Iand 1 <k <!l < J. From now on, this reduced matrix will be referred

to as UV, It has I(I — 1)J(J — 1)/4 rows and R(R — 1)/2 columns. This implies that (A3) is

equivalent to UV being a vertical or square matrix, which is necessary for full column rank.
Next, we define the following two matrices. Let A have elements of the form

dj g ai h

, with 1 <i<j<I and 1<g<h<R, (®)]
Aje  Qjh

where in each row of A the value of (i, j) is fixed and in each column of A the value of (g, h)
is fixed. Then A has I(I — 1) /2 rows and R(R — 1)/2 columns. The columns of A are ordered
such that index g runs slower than /. The rows of A are ordered such that index i runs slower
than j. Let B have elements of the form

brg bin

, with 1 <k<l<J and 1<g<h<R, 6)
bie by

where in each row of B the value of (k, 1) is fixed and in each column of B the value of (g,h)
is fixed. Then B has J(J —1)/2 rows and R(R — 1)/2 columns. The columns of B are ordered
such that index g runs slower than /. The rows of B are ordered such that index k runs slower
than /. It can be seen that each row of U is the Hadamard (i.e., element-wise) product of a
row of A and a row of B. Moreover, the Hadamard products of all row pairs of A and B are
included in UV, Therefore, the rows of UV can be ordered such that U is the Khatri-Rao
product of A and B, i.e., U" = AeB. A different ordering of the rows of UD yields UV =
BeA.
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The uniqueness condition of Jiang and Sidiropoulos (2004) boils down to both C and U
having full column rank. Our main result is the following.

Theorem 1. If (A1) and (A3) hold, then UD = A o B has full column rank with probability 1
with respect to the distribution F. Hence, if (A1)—(A3) hold, then the CP solution (A, B, C) is
essentially unique with probability 1.

The rest of this section contains the proof of Theorem 1. First, we consider the case where
R < I or R < J or both. Lemma 2 below shows that Theorem 1 holds in this case. A proof of
Lemma 2 can be found in Leurgans, Ross, and Abel (1993). Below, we offer an alternative proof,
which is more straightforward in our context. Notice that if both R < I and R < J, the result of
Lemma 2 follows from the uniqueness condition in Harshman (1972).

Lemma 2. Suppose (A1) and (A3) hold. If R < I or R < J or both, then UV has full column
rank with probability 1.

Proof. Suppose (A1) and (A3) hold and R < I. Premultiplying A or B by a nonsingular matrix
does not affect the uniqueness of the decomposition. If R < [ there exists (with probability 1) a
Iz Irr—1)2 ]
(0] (0] ’
Since B has at least one row with all elements nonzero (with probability 1), it follows that
rank(U") = rank(BeA) = rank(A) = R(R — 1)/2. From the symmetry of the problem it follows
analogously that also R < J yields rank(U") = R(R — 1)/2. O

nonsingular matrix S such that SA = [ ] The associated matrix A then equals [

In the remaining part of the proof of Theorem 1 we assume that R > ] and R > J. A
roadmap of the upcoming proof is as follows. We write the matrix U as

ﬁlToﬁ
UV =AeB= : , 7

~T -l
a_ppeB

where a! denotes row s of A. If the columns of U are linearly dependent, there exists a
nonzero vector d such that UVd = 0. This implies that d lies in the null spaces of 4’ e B, s=
1, ..., I(I— 1)/2. Below, we find a matrix N, the columns of which constitute a basis for
null(B), i.e., null(B) = span(N). With probability 1, the rows 557 do not contain zeros. It fol-
lows that null(a” e B) = null(BT,) = span(T;'N), where T, = diag(a’). Hence, a vector d in
null(UY) must lie in the intersection of span(T;lN), s =1,..., I(I— 1)/2. We will show
that, with probability 1, this intersection contains only the all-zero, vector, if (Al) and (A3)
hold.

We denote the column of B involving columns g and 4 of B as (g, h). We need the following
lemma to determine the dimensionality of null(ﬁ).

Lemma 3. Suppose (A1) holds and R > J. Then B has full row rank with probability 1. Also,
the columns (i, j) of B, 1 <i < j < J, are linearly independent with probability 1.

Proof. Let W denote the square matrix consisting of the columns (i, j) of B, 1 <i < j < J.
Then det(W) is an analytic function of the elements of the first J columns of B. From Lemma 1
it follows that if det(W) is nonzero for one particular B, then it is nonzero with probability 1. Let
the first J columns of B be equal to I;. Then W =1,;_1)/> and det(W) = 1. Hence, it follows
that det(W) is nonzero with probability 1, which proves both statements of the lemma. O
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It follows from Lemma 3 that, with probability 1, the dimensionality of null(B) equals
R(R —1)/2 — J(J — 1)/2. Next, we characterize null(B) by a basis. For this, we need the
following lemma which specifies a relationship between the columns of B and the columns
of B.

Lemma 4. Suppose the columns with indices g\, g2, ..., 8n, m < R, of B are linearly depen-
dent. Then the columns (g1, g2), (g1, 83),..-,(g1, 8&m) of B are linearly dependent.

Proof. Write by, = c1bg, + c3bg, + - - - + ¢, bg, with coefficients c¢;, where b, denotes the sth
column of B. Then, for the row of B involving rows k and / of B, we have

bk,gu bk,gm
bl,g1 bl,gm

bk,gl bk.,gs
bl,gl bl,gz

bk,gl bk,gl
bl,gl bl,gl

bk,gl bk,gz
bl,gl bl.gz

+c +-tcm ®)
Notice that the first term on the right-hand side of (8) equals zero. Since the coefficients of the
linear combination (8) do not depend on k and /, it can be concluded that (g;, g2) = c3(g1, &3)

+ -+ cu(g1, gm)- This completes the proof. O

Notice that Lemma 4 implies that if R > J, then kg < J — 1. This is because every set of
J + 1 different columns of B is linearly dependent and yields a set of J different columns of B
which is also linearly dependent.

As stated above, we characterize null(ﬁ) by a basis. Set n = R — J. It can be seen that

RR-1D2-JJ -1)/2=nJ+nn—-1)/2. C))

Below we will give nJ vectors d and n(n — 1)/2 vectors e that are linearly independent elements
of null(B) and, hence, constitute a basis for null(B). Define the following sets of columns
of B:

Sm =1{b1, ..., by, byynl, m=1,2,...,n, (10)

where by denotes column s of B. Each set S, is linearly dependent and yields, according to
Lemma 4, a set of J linearly dependent columns in B. However, the role of column g; in
Lemma 4 can be taken by each of the columns by, ..., b, (and also by b,,,, but we leave
this possibility out of consideration here). Hence, for each set S,, we can find J different sets
of J linearly dependent columns in B. We denote the corresponding vectors in null(B) by
d(g,m), where g is the column number taking the role of column g; in Lemma 4. Since the
columns (i, j) of B l1<i< Jj < J, are linearly independent with probability 1 (see Lemma 3)
and each d(g,m) represents a linear combination of J — 1 of these columns, together with
column (g, J +m) of B, it follows that each of the nJ vectors d(g,m) uniquely contains
a nonzero element for the column (g, J + m) of B. Hence, the vectors d(g,m) are linearly
independent.

Since B is a horizontal matrix, it follows that any set of J(J — 1)/2 + 1 different columns
is linearly dependent. The vectors d(g, m) contain zero elements for the columns (J + f, J + h)
of Bwith 1 < f < h < n. These are n(n — 1)/2 columns of B. Itis possible to find n(n— 1)/2
vectors e(f,h) in null(B) with nonzero elements for the columns (i, j) of B,1<i< j=<J,
and the column (J + f, J + h) of B. Since the columns @, ]J)of B.1<i< Jj < J, are linearly
independent with probability 1 (see Lemma 3), it follows that each vector e( f, i) uniquely has a
nonzero element for column (J + f, J + k) of B. This implies that the set of vectors given by
d(g,m) and e(f, h) is linearly independent and, by (9), spans the whole null(B). Hence, this set
of vectors is a basis for null(ﬁ).
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Let the matrix N contain the vectors d(g,m) and e( f, #) as columns, i.e., span(N) = null(B).
In the illustration below we present N for the case where J = 4 and R = 7. In this case, null(B)
has dimension 15. Nonzero elements are denoted by an *.

d(Ll) d(1,2) d(1,3) d(2,1) d(2,2) d(2,3) d(3,1) d(3,2) d(3,3) d(4,]) d(4.2) d(4,3)§e(1,2) e(1,3) e(2,3)
1,2) % % 5 s * % 5 * %
3| *

(1,4) * * * * * * * * *
Ls) | *
(1,6) *

(1,7) * !

(2,3) * * * * * * * * *

* * * * * [ * *

(2’4) * * * * * * 5 * * *
2.5) *

(2.6) *

@7 *

(3’4) * * * * * * ; * * *
(3.5) *

(3.6) *

3.7 *

(4.5) *

(4.6) .

@7 *

(5.6) -

.7) .

6.7) .

Recall the form of the matrix U" in (7) and the discussion below (7). A vector d in null(U1)
must lie in the intersection of span(T;l N),s =1,...,I(I — 1)/2. This implies that there exist
vectors X, Xp, ..., Xj(/—1)/2 such that

d =T;'Nx; = T;'Nx; = -+ = T;;_;,NXia-12. (11)

Notice that, since N has full column rank, it follows that the matrices TS‘IN also have full column
rank. The remaining part of the proof of Theorem 1 is devoted to showing that (11) implies x, = 0
for all s and, hence, d = 0. Naturally, this yields U having full column rank.

From the construction of N above, it follows that there exists a row-permutation P such that

PN = [g ], where D is a nonsingular diagonal matrix. We apply the same permutation to the
2

-1
_—1
diagonals of T;! and write PT; ! P” = |:TS ?_1 :|, where T, is of the same order as D. Let
O T,
Pd = (gl ), where d; has the same number of rows as D. It then follows from (11) that
2

-1 _—1
di=T, Dx; and d, =T, Nox,, fors=1,..., I(I-1)/2. (12)
From the first part of (12), it follows that x; = Dy xq, s = 2,...,I(I— 1)/2, where D; =
-1
D~!T,T, D is a nonsingular diagonal matrix. From the second part of (12), it then follows

-1 -1
that T, Nox; =T, NoDyxy, s =2,...,1(/— 1)/2. In matrix form, these equations in x; can be
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written as
_—1 _—1
T, N, - T, NoD,
_—1 _—1
Tl N, — T1(1—1)/2N2DI(1—1)/2
The matrix H has (/(/ — 1)/2 —-1)J(J — 1)/2 rows and R(R — 1)/2 — J(J — 1)/2 columns.
Assumption (A3) is thus equivalent to H being either square or vertical. Next, we argue that H
has full column rank with probability 1. This yields x; = 0 and we are done.
The matrix N; has no all-zero rows or columns (see the example above). This implies that
any dependencies in the rows or columns of N, due to rank-deficiency, do not carry over to
1

the matrices 'i‘l_ N, — TS_INzDS, s =2,...,I(I —1)/2. In fact, the latter have full rank with
probability 1. Moreover, any dependencies in the columns of ’i‘l_lNz — ’i‘s_lNzDs do not carry
T, N, — T, NaD,
-1 ,_1N2D,

T, N, - T
the matrix H, since it is either square or vertical, has full column rank with probability 1. This
completes the proof of Theorem 1. O

over to , for s # t, unless the latter is a horizontal matrix. Analogously,

3. Almost Sure Uniqueness in Indscal

Here we consider the Indscal decomposition, i.e., the CP decomposition (1) in which the
array X has symmetric slices and the constraint A = B is imposed. Hence, also the fitted part
of the Indscal decomposition has symmetric slices. For a discussion of the Indscal model, see
Carroll and Chang (1970) and Ten Berge, Sidiropoulos, and Rocci (2004). We assume that (B1)
and (B2) hold, i.e., A is randomly sampled from an /R-dimensional continuous distribution
and C has full column rank. Analogous to the CP decomposition, an Indscal solution (A, C)
is essentially unique if the matrix Ugyn, = AeA has full column rank. Our main result is the
following.

Theorem 2. If (B1) and (B3) hold, then Uy, = AeA has full column rank with probability 1
with respect to the distribution F. Hence, if (B1) — (B3) hold, then the Indscal solution (A, B) is
essentially unique with probability 1.

As stated in the Introduction, we have not obtained a complete proof of Theorem 2. However,
we will indicate how a proof can be obtained for any values of / and R satisfying (B3). As in the
previous section, we start by deleting redundant rows from the matrix Ugyp,.

Each row of Uy, is the Hadamard product of two (not necessarily different) rows of A.
However, some rows of U§ym appear twice. We denote a row of Ugyny, by (i, j, k,1), where (i, j)
and (k,l) are the rows of A involving rows i, j and rows k,[ of A, respectively. The following
can be observed:

e Rows (i, j,k,l) and (k,1,i, j) are identical.

When determining the rank Ugyn,, we may delete one of every two identical rows. The iden-
tical rows described above are avoided by only taking, as rows of Uy, the Hadamard prod-
uct of ﬁsT with ﬁ,T , t > s. Hence, instead of I*( — 1)2/4 rows we need to consider only
I(I—1)/411 I —1)/2+ 1] rows of Ugy,. We denote the matrix containing only these rows

by U{)),. The following lemma shows that there are still dependencies in the rows of U{),.
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Lemma 5. If (i, j,k,1) is a row of U and j < k, then

sym

row(i, j, k, ) —row (i, k, j, ) +row (i, I, j, k) = or. (14)

Proof. We have i < j < k < [, which implies that (i, k, j,I) and (i,l, j, k) are indeed rows of
UL Evaluating (14) for the element in column (g, &) yields

sym*

dig dih kg Ghn| _ | Gig i djg djh Gig i djg djh (15)
ajg Qjn aig an Ak,g Qk,h ag ain aig ain kg Arn |’
which equals O for every value of (g, k). This completes the proof. a

Dependencies of type (14) can be removed by deleting all rows (i, j, k, [) of U\) with j < k.

sym
Since we have i < j < k < [, the number of rows to be deleted is equal to the number of different

ordered sets of four numbers we can choose from the set {1, 2, ..., I}, ie., (i) (provided

that I > 4). The matrix in which these rows have been deleted is denoted by U?) . The right and

sym*
left-hand sides of (B3) are equal to the number of rows and columns of ngn, respectively. Hence,
assumption (B3) is equivalent to U@n being a square or vertical matrix, which is necessary for full
column rank. From the discussion above, it follows that null(Usyy,) = null(Uglyzn) = null(Ug,{n).
Hence, if one of these three matrices has full column rank, they all have full column rank. Notice
that Ugﬁn plays the same role as U'" in the previous section.

The derivation above shows that in the Indscal decomposition a lower value of R is needed
to guarantee essential uniqueness when compared to the CP decomposition. This is in line with
Ten Berge et al. (2004) who found that arrays with symmetric slices often have lower typical rank
values. Essential uniqueness usually occurs when R is smaller than the typical rank of the array.

Next, we continue our (partial) proof of Theorem 2. The following lemma treats the case
R < I. Its proof follows from the uniqueness condition in Harshman (1972). Below, we offer an

alternative proof, which is more straightforward in our context.

Lemma 6. Suppose (B1) and (B3) hold. If R < I, then Uy, has full column rank with probability
1.

Proof. The proof is analogous to the proof of Lemma 2. Suppose that (B1) and (B3) hold
and R < I. Premultiplying A by a nonsingular matrix does not affect the uniqueness of the
decomposition. If R < [ there exists (with probability 1) a nonsingular matrix S such that SA =

|:I(1; i| The associated matrix A then equals I:IR(R(; D/ 2] and Ugyy = A o A can also be written

. Ircr— . . .
(after a row permutation) as R(RO”/ z :| (Notice that the rows which are deleted when going

from Ugyy to Ug?n to Ugfn are contained in the rows of zeros in Ugyy.) This completes the

proof. O

In the remaining part of our (partial) proof of Theorem 2, we assume that R > I. Using
Lemma 1, we show that Theorem 2 holds for a range of values of I and R such that R > I and
(B3) holds.
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TABLE 1.
Values of / and upper bounds for R which follow from (B3).

I 2 3 4 5 6 7 8 9

UpperboundforR 2 4 6 10 15 20 26 33

Notice that det(UsTmeSym) is a real-valued analytic function of the elements of A. Moreover,

det(USTmesym) # 0 is equivalent to Ugy, being of full column rank. According to Lemma 1, there
holds for fixed I and R that if det(USTmesym) is nonzero for one particular A, then it is nonzero
with probability 1. In Table 1, we give for values I = 2, ..., 9 the upper bound for R which
follows from (B3). For all pairs (/, R) in Table 1 with R > I, we have generated a random matrix
A and verified that det(USTmesym) # 0. Hence, using Lemma 1, we have proven Theorem 2 for
these pairs (/, R). Lemma 6 above covers all cases for which R < I. To prove Theorem 2 for any
pair (I, R) satisfying (B3), which is not considered in Lemma 6 or Table 1, it suffices to generate
a random matrix A and to verify that det(USTmesym) # 0.

Notice that our proof of Theorem 1 cannot easily be adapted to prove Theorem 2. Indeed,
if A = B there exist deterministic relations between the diagonal matrices Ty = diag(ﬁsT) and
the matrix N, for which now holds span(N) = null(f&). This makes the analysis a lot more

complicated.
4. Discussion

We have obtained almost sure uniqueness conditions for the CP and Indscal decompositions
when the component matrices A and B are randomly sampled from a continuous distribution
and C has full column rank. By using the approach of Jiang and Sidiropoulos (2004) we were
able to make a clear distinction between the CP and Indscal models. In the latter case, a stricter
uniqueness condition (in terms of R) is obtained, since the Indscal model contains less parameters
than the CP model. In our context, both uniqueness conditions are more relaxed than Kruskal’s
condition (3).

In the majority of cases, solutions obtained from CP and Indscal algorithms can be regarded
as randomly sampled from a continuous distribution and our sufficient uniqueness conditions
(A3) and (B3) apply. However, sometimes a solution obtained from a CP or Indscal algorithm
may exhibit features which occur with probability zero in our analysis. The best known example
are so-called degenerate solutions, in which the product of the correlations of two factors for
the three modes tends to —1 (two-factor degeneracy, see Kruskal, Harshman, and Lundy, 1989).
Such cases are outside the scope of analysis presented in this paper.
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